\(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [583]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 45, antiderivative size = 129 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a (7 A+5 B+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A+5 B) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}} \]

[Out]

2/15*a*(7*A+5*B+15*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)+2/5*A*sin(d*x+c)*(a+a*sec(d*x+c))^(
1/2)/d/sec(d*x+c)^(3/2)+2/15*(A+5*B)*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {4171, 4098, 3889} \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a (7 A+5 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d \sqrt {a \sec (c+d x)+a}}+\frac {2 (A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{15 d \sqrt {\sec (c+d x)}}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(5/2),x]

[Out]

(2*a*(7*A + 5*B + 15*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*A*Sqrt[a + a*Sec
[c + d*x]]*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(A + 5*B)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(15*d*
Sqrt[Sec[c + d*x]])

Rule 3889

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-2*a*(Co
t[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 4098

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 4171

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (A+5 B)+\frac {1}{2} a (2 A+5 C) \sec (c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{5 a} \\ & = \frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A+5 B) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {1}{15} (7 A+5 B+15 C) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a (7 A+5 B+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A+5 B) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.45 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.57 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a (19 A+20 B+30 C+2 (4 A+5 B) \cos (c+d x)+3 A \cos (2 (c+d x))) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(5/2),x]

[Out]

(a*(19*A + 20*B + 30*C + 2*(4*A + 5*B)*Cos[c + d*x] + 3*A*Cos[2*(c + d*x)])*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(
15*d*Sqrt[a*(1 + Sec[c + d*x])])

Maple [A] (verified)

Time = 1.33 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.63

method result size
default \(\frac {2 \left (3 A \cos \left (d x +c \right )^{2}+4 A \cos \left (d x +c \right )+5 B \cos \left (d x +c \right )+8 A +10 B +15 C \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{15 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(81\)
parts \(\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sin \left (d x +c \right )+4 \tan \left (d x +c \right )+8 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}+\frac {2 B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}-\frac {2 C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{d \sqrt {\sec \left (d x +c \right )}}\) \(161\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/15/d*(3*A*cos(d*x+c)^2+4*A*cos(d*x+c)+5*B*cos(d*x+c)+8*A+10*B+15*C)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/
sec(d*x+c)^(3/2)*tan(d*x+c)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.73 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \, {\left (3 \, A \cos \left (d x + c\right )^{3} + {\left (4 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (8 \, A + 10 \, B + 15 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

2/15*(3*A*cos(d*x + c)^3 + (4*A + 5*B)*cos(d*x + c)^2 + (8*A + 10*B + 15*C)*cos(d*x + c))*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))

Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(5/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sec(c + d*x)**(5/2), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 335 vs. \(2 (111) = 222\).

Time = 0.50 (sec) , antiderivative size = 335, normalized size of antiderivative = 2.60 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (30 \, \cos \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \cos \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) - 30 \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) - 5 \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 6 \, \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \sin \left (\frac {3}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 30 \, \sin \left (\frac {1}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right )\right )} A \sqrt {a} + 10 \, \sqrt {2} {\left (3 \, \cos \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) - 3 \, \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) \sin \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) + 2 \, \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 \, \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )\right )} B \sqrt {a} + 120 \, \sqrt {2} C \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{60 \, d} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/60*(sqrt(2)*(30*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) + 5*cos(2/
5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 30*cos(5/2*d*x + 5/2*c)*sin(4/5*
arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x + 5/
2*c), cos(5/2*d*x + 5/2*c))) + 6*sin(5/2*d*x + 5/2*c) + 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x +
5/2*c))) + 30*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A*sqrt(a) + 10*sqrt(2)*(3*cos(2/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(3/2*d*x + 3/2*c) - 3*cos(3/2*d*x + 3/2*c)*sin(2/3*arc
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(3/2*d*x + 3/2*c) + 3*sin(1/3*arctan2(sin(3/2*d*x + 3
/2*c), cos(3/2*d*x + 3/2*c))))*B*sqrt(a) + 120*sqrt(2)*C*sqrt(a)*sin(1/2*d*x + 1/2*c))/d

Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 17.66 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (35\,A\,\sin \left (c+d\,x\right )+40\,B\,\sin \left (c+d\,x\right )+60\,C\,\sin \left (c+d\,x\right )+8\,A\,\sin \left (2\,c+2\,d\,x\right )+3\,A\,\sin \left (3\,c+3\,d\,x\right )+10\,B\,\sin \left (2\,c+2\,d\,x\right )\right )}{30\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

[In]

int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(5/2),x)

[Out]

(cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x))^(1/2)*(35*A*sin(c + d*x) + 40*B*sin
(c + d*x) + 60*C*sin(c + d*x) + 8*A*sin(2*c + 2*d*x) + 3*A*sin(3*c + 3*d*x) + 10*B*sin(2*c + 2*d*x)))/(30*d*(c
os(c + d*x) + 1))